1. 排序思路
每一次遍历的过程中,都假定第一个索引处的元素是最小值,和其他索引处的值依次进行比较,如果当前索引处
的值大于其他某个索引处的值,则假定其他某个索引出的值为最小值,最后可以找到最小值所在的索引交换第一个索引处和最小值所在的索引处的值
2. 代码实现
public class Selection {
/*
对数组a中的元素进行排序
*/
public static void sort(Comparable[] a){
for(int i=0;i<=a.length-2;i++){
//定义一个变量,记录最小元素所在的索引,默认为参与选择排序的第一个元素所在的位置
int minIndex = i;
for(int j=i+1;j<=a.length-1;j++){
//需要比较最小索引minIndex处的值和j索引处的值;
if (greater(a[minIndex],a[j])){
minIndex=j;
}
}
//交换最小元素所在索引minIndex处的值和索引i处的值
exch(a,i,minIndex);
}
}
/*
比较v元素是否大于w元素
*/
private static boolean greater(Comparable v,Comparable w){
return v.compareTo(w)>0;
}
/*
数组元素i和j交换位置
*/
private static void exch(Comparable[] a,int i,int j){
Comparable temp;
temp = a[i];
a[i]=a[j];
a[j]=temp;
}
}
3. 选择排序的时间复杂度分析
选择排序使用了双层for循环,其中外层循环完成了数据交换,内层循环完成了数据比较,所以我们分别统计数据
交换次数和数据比较次数:
数据比较次数:
(N-1)+(N-2)+(N-3)+…+2+1=((N-1)+1)*(N-1)/2=N^2/2-N/2;
数据交换次数:
N-1
时间复杂度:N^2/2-N/2+(N-1)=N^2/2+N/2-1;
根据大O推导法则,保留最高阶项,去除常数因子,时间复杂度为O(N^2);