一、 排序原理
- 尽可能的一组数据拆分成两个元素相等的子组,并对每一个子组继续拆分,直到拆分后的每个子组的元素个数是1为止。
- 将相邻的两个子组进行合并成一个有序的大组;
- 不断的重复步骤2,直到最终只有一个组为止。
1. 运用分治思想
2. 排序
二、代码实现
public class Merge {
//归并所需要的辅助数组
private static Comparable[] assist;
/*
比较v元素是否小于w元素
*/
private static boolean less(Comparable v, Comparable w) {
return v.compareTo(w)<0;
}
/*
数组元素i和j交换位置
*/
private static void exch(Comparable[] a, int i, int j) {
Comparable t = a[i];
a[i] = a[j];
a[j] = t;
}
/*
对数组a中的元素进行排序
*/
public static void sort(Comparable[] a) {
//1.初始化辅助数组assist;
assist = new Comparable[a.length];
//2.定义一个lo变量,和hi变量,分别记录数组中最小的索引和最大的索引;
int lo=0;
int hi=a.length-1;
//3.调用sort重载方法完成数组a中,从索引lo到索引hi的元素的排序
sort(a,lo,hi);
}
/*
对数组a中从lo到hi的元素进行排序
*/
private static void sort(Comparable[] a, int lo, int hi) {
//做安全性校验;
if (hi<=lo){
return;
}
//对lo到hi之间的数据进行分为两个组
int mid = lo+(hi-lo)/2;// 5,9 mid=7
//分别对每一组数据进行排序
sort(a,lo,mid);
sort(a,mid+1,hi);
//再把两个组中的数据进行归并
merge(a,lo,mid,hi);
}
/*
对数组中,从lo到mid为一组,从mid+1到hi为一组,对这两组数据进行归并
*/
private static void merge(Comparable[] a, int lo, int mid, int hi) {
//定义三个指针
int i=lo;
int p1=lo;
int p2=mid+1;
//遍历,移动p1指针和p2指针,比较对应索引处的值,找出小的那个,放到辅助数组的对应索引处
while(p1<=mid && p2<=hi){
//比较对应索引处的值
if (less(a[p1],a[p2])){
assist[i++] = a[p1++];
}else{
assist[i++]=a[p2++];
}
}
//遍历,如果p1的指针没有走完,那么顺序移动p1指针,把对应的元素放到辅助数组的对应索引处
while(p1<=mid){
assist[i++]=a[p1++];
}
//遍历,如果p2的指针没有走完,那么顺序移动p2指针,把对应的元素放到辅助数组的对应索引处
while(p2<=hi){
assist[i++]=a[p2++];
}
//把辅助数组中的元素拷贝到原数组中
for(int index=lo;index<=hi;index++){
a[index]=assist[index];
}
}
}
三、时间复杂度分析
归并排序是分治思想的最典型的例子,上面的算法中,对a[lo…hi]进行排序,先将它分为a[lo…mid]和a[mid+1…hi]两部分,分别通过递归调用将他们单独排序,最后将有序的子数组归并为最终的排序结果。该递归的出口在于如果一个数组不能再被分为两个子数组,那么就会执行merge进行归并,在归并的时候判断元素的大小进行排序。
用树状图来描述归并,如果一个数组有8个元素,那么它将每次除以2找最小的子数组,共拆log8次,值为3,所以树共有3层,那么自顶向下第k层有2^k个子数组,每个数组的长度为2^(3-k),归并最多需要2^(3-k)次比较。因此每层的比较次数为 2^k * 2^(3-k)=2^3,那么3层总共为 3*2^3。
假设元素的个数为n,那么使用归并排序拆分的次数为log2(n),所以共log2(n)层,那么使用log2(n)替换上面32^3中的3这个层数,最终得出的归并排序的时间复杂度为:log2(n) 2^(log2(n))=log2(n)*n,根据大O推导法则,忽略底数,最终归并排序的时间复杂度为O(nlogn);
归并排序的缺点:
需要申请额外的数组空间,导致空间复杂度提升,是典型的以空间换时间的操作。
归并排序所需的时间和 NlgN 成正比
四、改进方案
详细见:算法(第四版)P174~P175
- 使用插入排序处理小规模的数组(比如长度小于15的数组)一般可以把归并排序的时间缩短10%~15%
- 添加一个判断,如果a[mid] <= a[mid+1] ,即可认为数组已经有序的,并跳过merge()方法。
- 可节省将辅助数组复制到原数组的时间
方法:调用2种排序方法:一种将数据从输入数组排序到辅助数组,一种将数据从辅助数组排序到输入数组。