一、BIO 模型
1、简介
I/O
模型简单的理解:就是用什么样的通道进行数据的发送和接收,很大程度上决定了程序通信的性能。
Java BIO
就是传统的Java I/O
编程,其相关的类和接口在java.io
。BIO(BlockingI/O)
:同步阻塞,服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器端就需要启动一个线程进行处理,如果这个连接不做任何事情会造成不必要的线程开销,可以通过线程池机制改善(实现多个客户连接服务器)。【后有应用实例】BIO
方式适用于连接数目比较小且固定的架构,这种方式对服务器资源要求比较高,并发局限于应用中,JDK1.4
以前的唯一选择,程序简单易理解。
2、工作机制

- 服务器端启动一个
ServerSocket
。 - 客户端启动
Socket
对服务器进行通信,默认情况下服务器端需要对每个客户建立一个线程与之通讯。 - 客户端发出请求后,先咨询服务器是否有线程响应,如果没有则会等待,或者被拒绝。
- 如果有响应,客户端线程会等待请求结束后,在继续执行。
3、应用实例
实例说明:
- 使用
BIO
模型编写一个服务器端,监听6666
端口,当有客户端连接时,就启动一个线程与之通讯。 - 要求使用线程池机制改善,可以连接多个客户端。
- 服务器端可以接收客户端发送的数据(
telnet
方式即可)。 - 代码演示:
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class BIOServer {
public static void main(String[] args) throws Exception {
//线程池机制
//思路
//1. 创建一个线程池
//2. 如果有客户端连接,就创建一个线程,与之通讯(单独写一个方法)
ExecutorService newCachedThreadPool = Executors.newCachedThreadPool();
//创建ServerSocket
ServerSocket serverSocket = new ServerSocket(6666);
System.out.println("服务器启动了");
while (true) {
System.out.println("线程信息id = " + Thread.currentThread().getId() + "名字 = " + Thread.currentThread().getName());
//监听,等待客户端连接
System.out.println("等待连接....");
final Socket socket = serverSocket.accept();
System.out.println("连接到一个客户端");
//就创建一个线程,与之通讯(单独写一个方法)
newCachedThreadPool.execute(new Runnable() {
public void run() {//我们重写
//可以和客户端通讯
handler(socket);
}
});
}
}
//编写一个handler方法,和客户端通讯
public static void handler(Socket socket) {
try {
System.out.println("线程信息id = " + Thread.currentThread().getId() + "名字 = " + Thread.currentThread().getName());
byte[] bytes = new byte[1024];
//通过socket获取输入流
InputStream inputStream = socket.getInputStream();
//循环的读取客户端发送的数据
while (true) {
System.out.println("线程信息id = " + Thread.currentThread().getId() + "名字 = " + Thread.currentThread().getName());
System.out.println("read....");
int read = inputStream.read(bytes);
if (read != -1) {
System.out.println(new String(bytes, 0, read));//输出客户端发送的数据
} else {
break;
}
}
} catch (Exception e) {
e.printStackTrace();
} finally {
System.out.println("关闭和client的连接");
try {
socket.close();
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
4、BIO问题分析
- 每个请求都需要创建独立的线程,与对应的客户端进行数据
Read
,业务处理,数据Write
。 - 当并发数较大时,需要创建大量线程来处理连接,系统资源占用较大。
- 连接建立后,如果当前线程暂时没有数据可读,则线程就阻塞在
Read
操作上,造成线程资源浪费。
二、NIO 模型
1、基本介绍
Java NIO
全称 Java non-blocking IO ,是指JDK
提供的新API
。从JDK1.4
开始,Java
提供了一系列改进的输入/输出的新特性,被统称为NIO
(即NewIO
),是同步非阻塞的。NIO
相关类都被放在java.nio
包及子包下,并且对原java.io
包中的很多类进行改写。【基本案例】NIO
有三大核心部分:Channel
(通道)、Buffer
(缓冲区)、Selector
(选择器) 。NIO
是面向缓冲区,或者面向块编程的。数据读取到一个它稍后处理的缓冲区,需要时可在缓冲区中前后移动,这就增加了处理过程中的灵活性,使用它可以提供非阻塞式的高伸缩性网络。Java NIO
的非阻塞模式,使一个线程从某通道发送请求或者读取数据,但是它仅能得到目前可用的数据,如果目前没有数据可用时,就什么都不会获取,而不是保持线程阻塞,所以直至数据变的可以读取之前,该线程可以继续做其他的事情。非阻塞写也是如此,一个线程请求写入一些数据到某通道,但不需要等待它完全写入,这个线程同时可以去做别的事情。【后面有案例说明】- 通俗理解:
NIO
是可以做到用一个线程来处理多个操作的。假设有10000
个请求过来,根据实际情况,可以分配50
或者100
个线程来处理。不像之前的阻塞IO
那样,非得分配10000
个。 HTTP 2.0
使用了多路复用的技术,做到同一个连接并发处理多个请求,而且并发请求的数量比HTTP 1.1
大了好几个数量级。- 案例说明
NIO
的Buffer
import java.nio.IntBuffer;
public class BasicBuffer {
public static void main(String[] args) {
//举例说明 Buffer 的使用(简单说明)
//创建一个 Buffer,大小为 5,即可以存放 5 个 int
IntBuffer intBuffer = IntBuffer.allocate(5);
//向buffer存放数据
//intBuffer.put(10);
//intBuffer.put(11);
//intBuffer.put(12);
//intBuffer.put(13);
//intBuffer.put(14);
for (int i = 0; i < intBuffer.capacity(); i++) {
intBuffer.put(i * 2);
}
//如何从 buffer 读取数据
//将 buffer 转换,读写切换(!!!)
intBuffer.flip();
while (intBuffer.hasRemaining()) {
System.out.println(intBuffer.get());
}
}
}
2、三大核心组件关系

- 每个
Channel
都会对应一个Buffer
。 Selector
对应一个线程,一个线程对应多个Channel
(连接)。- 该图反应了有三个
Channel
注册到该Selector
//程序 - 程序切换到哪个
Channel
是由事件决定的,Event
就是一个重要的概念。 Selector
会根据不同的事件,在各个通道上切换。Buffer
就是一个内存块,底层是有一个数组。- 数据的读取写入是通过
Buffer
,这个和BIO
,BIO
中要么是输入流,或者是输出流,不能双向,但是NIO
的Buffer
是可以读也可以写,需要flip
方法切换Channel
是双向的,可以返回底层操作系统的情况,比如Linux
,底层的操作系统通道就是双向的。
Channel与Buffer
Java NIO系统的核心在于:通道(Channel)和缓冲区(Buffer)**。通道表示打开到 IO 设备(例如:文件、套接字)的连接。若需要使用 NIO 系统,需要获取用于连接 IO 设备的通道以及用于容纳数据的缓冲区**。然后操作缓冲区,对数据进行处理
简而言之,通道负责传输,缓冲区负责存储
常见的Channel有以下四种,其中FileChannel主要用于文件传输,其余三种用于网络通信
- FileChannel
- DatagramChannel
- SocketChannel
- ServerSocketChannel
Buffer有以下几种(用于将不同类型的数据存储到缓冲区),其中使用较多的是ByteBuffer,
- ByteBuffer
- MappedByteBuffer
- DirectByteBuffer
- HeapByteBuffer
- ShortBuffer
- IntBuffer
- LongBuffer
- FloatBuffer
- DoubleBuffer
- CharBuffer
3、NIO 和 BIO 比较
BIO
以流的方式处理数据,而NIO
以块的方式处理数据,块I/O
的效率比流I/O
高很多。BIO
是阻塞的,NIO
则是非阻塞的。BIO
基于字节流和字符流进行操作,而NIO
基于Channel
(通道)和Buffer
(缓冲区)进行操作,数据总是从通道读取到缓冲区中,或者从缓冲区写入到通道中。Selector
(选择器)用于监听多个通道的事件(比如:连接请求,数据到达等),因此使用单个线程就可以监听多个客户端通道。
三、NIO - 缓冲区
1、缓冲区(Buffer)
(1)基本介绍
缓冲区(Buffer
):缓冲区本质上是一个可以读写数据的内存块,可以理解成是一个容器对象(含数组),该对象提供了一组方法,可以更轻松地使用内存块,,缓冲区对象内置了一些机制,能够跟踪和记录缓冲区的状态变化情况。Channel
提供从文件、网络读取数据的渠道,但是读取或写入的数据都必须经由 Buffer
使用缓冲区的好处:服务器的内存并不是无限大的,当读取大文件时,很可能造成内存占用过高,甚至不足。
(2)基本的使用方法
1、写入数据:向 buffer 写入数据,例如调用 channel.read(buffer)
2、切换至读模式:调用 flip()
(flip会使得buffer中的limit变为position,position变为0)
3、读取数据:从 buffer 读取数据,例如调用 buffer.get()
4、切换至写模式:调用 clear()
或者compact()
切换至写模式
- 调用
clear()
方法时position=0,limit变为capacity - 调用
compact()
方法时,会将缓冲区中的未读数据压缩到缓冲区前面
5、重复以上步骤
案例:使用ByteBuffer读取文件中的内容
public class P6_ByteBuffer {
public static void main(String[] args) {
// FileChannel
// 1、输入输出流,2、RandomAccessFile
try(FileChannel channel = new FileInputStream("D:\\data.txt").getChannel()){
// 准备缓冲区(创建10字节大小的缓冲区)
ByteBuffer buffer = ByteBuffer.allocate(10);
int len = 0;
StringBuilder builder = new StringBuilder();
while(true){
// 从 channel 中读取数据,向 buffer 中写入
len = channel.read(buffer);
System.out.println("读取到的字节数:" + len);
// 判断是否含有内容
if (len == -1){
break;
}
// 切换至读模式
buffer.flip();
// 读取 buffer 的内容并打印
while(buffer.hasRemaining()){
byte b = buffer.get();
builder.append((char)b);
}
buffer.clear(); // 切换为写模式
}
System.out.println(builder);
}catch (IOException e){
e.printStackTrace();
}
}
}
(3)Buffer 核心属性
字节缓冲区的父类Buffer
中有几个核心属性,如下
// Invariants: mark <= position <= limit <= capacity
private int mark = -1;
private int position = 0;
private int limit;
private int capacity;
- capacity:缓冲区的容量。通过构造函数赋予,一旦设置,无法更改
- limit:缓冲区的界限。位于limit 后的数据不可读写。缓冲区的限制不能为负,并且不能大于其容量
- position:下一个读写位置的索引(类似PC)。缓冲区的位置不能为负,并且不能大于limit
- mark:记录当前position的值。position被改变后,可以通过调用reset() 方法恢复到mark的位置。
以上四个属性必须满足以下要求
mark <= position <= limit <= capacity
(4)切换读写模式
切换读写模式的本质是改变 position 和 limit 两个指针的位置
一开始
写模式下,position 是写入位置,limit 等于容量,下图表示写入了 4 个字节后的状态
flip 动作发生后,position 切换为读取位置,limit 切换为读取限制
读取 4 个字节后,状态
clear 动作发生后,状态
compact 方法,是把未读完的部分向前压缩,然后切换至写模式
(4)Buffer 核心方法
put() 方法
- put()方法可以将一个数据放入到缓冲区中。
- 进行该操作后,postition的值会+1,指向下一个可以放入的位置。capacity = limit ,为缓冲区容量的值。

flip() 方法
- flip()方法会切换对缓冲区的操作模式,由写->读 / 读->写
- 进行该操作后
- 如果是写模式->读模式,position = 0 , limit 指向最后一个元素的下一个位置,capacity不变
- 如果是读->写,则恢复为put()方法中的值

get() 方法
get()
方法会读取缓冲区中的一个值- 进行该操作后,position会+1,如果超过了limit则会抛出异常
- 注意:get(i)方法不会改变position的值
clean() 方法
clean()
方法会将缓冲区中的各个属性恢复为最初的状态,position = 0, capacity = limit- 此时缓冲区的数据依然存在,处于“被遗忘”状态,下次进行写操作时会覆盖这些数据

compact()方法
此方法为ByteBuffer的方法,而不是Buffer的方法
- compact会把未读完的数据向前压缩,然后切换到写模式
- 数据前移后,原位置的值并未清零,写时会覆盖之前的值
clear() VS compact()
clear只是对position、limit、mark进行重置,而compact在对position进行设置,以及limit、mark进行重置的同时,还涉及到数据在内存中拷贝(会调用arraycopy)。所以compact比clear更耗性能。但compact能保存你未读取的数据,将新数据追加到为读取的数据之后;而clear则不行,若你调用了clear,则未读取的数据就无法再读取到了
分配空间
可以使用 allocate 方法为 ByteBuffer 分配空间,其它 buffer 类也有该方法
Bytebuffer buf = ByteBuffer.allocate(16);
向 buffer 写入数据
有两种办法
- 调用 channel 的 read 方法
- 调用 buffer 自己的 put 方法
int readBytes = channel.read(buf);
和
buf.put((byte)127);
从 buffer 读取数据
同样有两种办法
- 调用 channel 的 write 方法
- 调用 buffer 自己的 get 方法
int writeBytes = channel.write(buf);
和
byte b = buf.get();
get 方法会让 position 读指针向后走,如果想重复读取数据
- 可以调用 rewind 方法将 position 重新置为 0
- 或者调用 get(int i) 方法获取索引 i 的内容,它不会移动读指针
rewind() 方法
- 该方法只能在读模式下使用
rewind()
方法后,会恢复position、limit和capacity的值,变为进行get()前的值
mark 和 reset
mark 是在读取时,做一个标记,即使 position 改变,只要调用 reset 就能回到 mark 的位置,是对rewind()
方法的增强
mark()
方法会将postion的值保存到mark属性中reset()
方法会将position的值改为mark中保存的值
注意
rewind 和 flip 都会清除 mark 位置
字符串转 ByteBuffer
// -------------------字符串转化为 ByteBuffer--------------------
// 1、put() 方法,转化后 byteBuffer 仍处于写模式
ByteBuffer buffer = ByteBuffer.allocate(16);
buffer.put("hello".getBytes());
ByteBufferUtil.debugAll(buffer); // 用于观察调试Buffer指针位置
// 2、Charset,转化后 byteBuffer 自动切换到读模式
ByteBuffer buffer1 = StandardCharsets.UTF_8.encode("hello");
ByteBufferUtil.debugAll(buffer1);
// 3、wrap,转化后 byteBuffer 自动切换到读模式
ByteBuffer buffer2 = ByteBuffer.wrap("hello".getBytes());
ByteBufferUtil.debugAll(buffer2);
// ------------------ByteBuffer 转字符串-----------------------
String s1 = StandardCharsets.UTF_8.decode(buffer).toString();
System.out.println(s1); // 输出为空,因为buffer处于写模式
buffer.flip(); // 转化为读模式
String s2 = StandardCharsets.UTF_8.decode(buffer).toString();
System.out.println(s2); // 输出hello
String s3 = StandardCharsets.UTF_8.decode(buffer2).toString();
System.out.println(s3); // 输出hello
从下面的输出中可以观察到第一种在转化为 byteBuffer 之后是处于写模式,而第二三种是自动转化到读模式
+--------+-------------------- all ------------------------+----------------+
position: [5], limit: [16]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f 00 00 00 00 00 00 00 00 00 00 00 |hello...........|
+--------+-------------------------------------------------+----------------+
+--------+-------------------- all ------------------------+----------------+
position: [0], limit: [5]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f |hello |
+--------+-------------------------------------------------+----------------+
+--------+-------------------- all ------------------------+----------------+
position: [0], limit: [5]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f |hello |
+--------+-------------------------------------------------+----------------+
2、Buffer 非线程安全
3、分段读取
将文件内容读取到多个 ByteBuffer 中
// new RandomAccessFile()用于获取channel,参数r为只读,文件内容:123456789
try(FileChannel channel = new RandomAccessFile("D:\\data.txt","r").getChannel()){
ByteBuffer buffer1 = ByteBuffer.allocate(3);
ByteBuffer buffer2 = ByteBuffer.allocate(3);
ByteBuffer buffer3 = ByteBuffer.allocate(3);
// 读取,参数为ByteBuffer数组,则为分段读取
channel.read(new ByteBuffer[]{buffer1,buffer2,buffer3});
// 转化为读模式
buffer1.flip();
buffer2.flip();
buffer3.flip();
System.out.println( StandardCharsets.UTF_8.decode(buffer1).toString() );//123
System.out.println( StandardCharsets.UTF_8.decode(buffer2).toString() );//456
System.out.println( StandardCharsets.UTF_8.decode(buffer3).toString() );//789
}catch (IOException e){
e.printStackTrace();
}
4、集中写入
将多个 ByteBuffer 的内容写入到文件中
ByteBuffer buffer1 = StandardCharsets.UTF_8.encode("hello");
ByteBuffer buffer2 = StandardCharsets.UTF_8.encode("world");
ByteBuffer buffer3 = StandardCharsets.UTF_8.encode("你好"); //一个汉字3个字节
// rw:可读可写权限
try(FileChannel channel = new RandomAccessFile("2.txt","rw").getChannel()){
// 写数据,生成文件内容:helloworld你好
channel.write(new ByteBuffer[]{buffer1,buffer2,buffer3});
}catch (IOException e){
e.printStackTrace();
}
5、粘包、半包
现象
网络上有多条数据发送给服务端,数据之间使用 \n 进行分隔
但由于某种原因这些数据在接收时,被进行了重新组合,例如原始数据有3条为
- Hello world\n
- i like learn java\n
- Hello netty\n
变成了下面的两个 byteBuffer (粘包,半包)
- Hello world\ni like learn java\nhe
- llo netty\n
出现原因
粘包
发送方在发送数据时,并不是一条一条地发送数据,而是将数据整合在一起,当数据达到一定的数量后再一起发送。这就会导致多条信息被放在一个缓冲区中被一起发送出去
半包
接收方的缓冲区的大小是有限的,当接收方的缓冲区满了以后,就需要将信息截断,等缓冲区空了以后再继续放入数据。这就会发生一段完整的数据最后被截断的现象
解决办法
通过get(index)方法遍历ByteBuffer,遇到分隔符时进行处理。
注意
:get(index)不会改变position的值
- 记录该段数据长度,以便于申请对应大小的缓冲区
- 将缓冲区的数据通过get()方法写入到target中
调用compact方法切换模式,因为缓冲区中可能还有未读的数据
/*
* 模拟粘包半包
* \n :为一个字符
* 一个字母一个字符,一个汉字3个字符
* */
public class P14_ByteBufferExam {
public static void main(String[] args) {
final ByteBuffer buffer = ByteBuffer.allocate(32);
// 解析粘包
buffer.put("hello world\ni like learn java\nhe".getBytes());
split(buffer);
ByteBufferUtil.debugAll(buffer);
// 解析半包
buffer.put("llo netty\n".getBytes());
split(buffer);
ByteBufferUtil.debugAll(buffer);
}
/**
* 解决粘包、半包
* 这种方式为学习使用,效率过低
*/
private static void split(ByteBuffer buffer) {
buffer.flip(); // 转化为读模式
for (int i = 0;i < buffer.limit();i++){
if (buffer.get(i) == '\n'){
// 计算 buffer 中行的长度
int len = (i + 1) - buffer.position();
for (int j = 0 ; j < len ; j++){
System.out.print((char) buffer.get());
}
System.out.println();
}
}
// 切换为写模式,但是缓冲区可能未读完,这里需要使用compact
buffer.compact();
}
}
四、NIO - 文件编程
1、FileChannel
(1)工作模式
FileChannel只能在阻塞模式下工作,所以无法搭配Selector
(2)获取
不能直接打开 FileChannel,必须通过 FileInputStream、FileOutputStream 或者 RandomAccessFile 来获取 FileChannel,它们都有 getChannel 方法
- 通过 FileInputStream 获取的 channel 只能读
- 通过 FileOutputStream 获取的 channel 只能写
- 通过 RandomAccessFile 是否能读写根据构造 RandomAccessFile 时的读写模式决定
// 1、通过 FileInputStream 获取只读的 FileChannel
FileInputStream is = new FileInputStream("2.txt");
FileChannel channel = is.getChannel();
// 2、通过 FileOutputStream 获取只写的 FileChannel
FileOutputStream os = new FileOutputStream("3.txt");
FileChannel channel1 = os.getChannel();
// 3、通过 RandomAccessFile 获取 可读可写rw、只读f 的FileChannel
RandomAccessFile raf = new RandomAccessFile("4.txt", "rw");
FileChannel channel2 = raf.getChannel();
(3)读取
通过 FileInputStream 获取channel,通过read方法将数据写入到ByteBuffer中
read方法的返回值表示读到了多少字节,若读到了文件末尾则返回-1
// 从 channel 读取数据
int readBytes = channel.read(buffer);
判断是否读取完毕
// 可根据返回值判断是否读取完毕
while(channel.read(buffer) > 0) {
// 进行对应操作
...
}
(4)写入
因为channel也是有大小的,所以 write 方法并不能保证一次将 buffer 中的内容全部写入 channel。必须需要按照以下规则进行写入
// 通过hasRemaining()方法查看缓冲区中是否还有数据未写入到通道中
while(buffer.hasRemaining()) {
channel.write(buffer);
}
(5)关闭
通道需要close,一般情况通过try-with-resource
进行关闭,最好使用以下方法获取strea以及channel,避免某些原因使得资源未被关闭
JDK1.7之后有了try-with-resource
处理机制。首先被自动关闭的资源需要实现Closeable或者AutoCloseable接口,因为只有实现了这两个接口才可以自动调用close()方法去自动关闭资源。写法为try(){}catch(){},将要关闭的外部资源在try()中创建,catch()捕获处理异常。其实try-with-resource机制是一种语法糖,其底层实现原理仍然是try{}catch(){}finally{
}写法,不过在catch(){}代码块中有一个addSuppressed()方法,即异常抑制方法。如果业务处理和关闭连接都出现了异常,业务处理的异常会抑制关闭连接的异常,只抛出处理中的异常,仍然可以通过getSuppressed()方法获得关闭连接的异常。
// 在 try 后面创建的可关闭对象,会自动关闭
try (FileInputStream fis = new FileInputStream("stu.txt");
FileOutputStream fos = new FileOutputStream("student.txt");
FileChannel inputChannel = fis.getChannel();
FileChannel outputChannel = fos.getChannel()) {
// 执行对应操作
}catch (IOException e){
e.printStackTrace();
}
(6)位置
channel也拥有一个保存读取数据位置的属性,即position
long pos = channel.position();
可以通过position(int pos)设置channel中position的值
long newPos = ...;
channel.position(newPos);
设置当前位置时,如果设置为文件的末尾
- 这时读取会返回 -1
- 这时写入,会追加内容,但要注意如果 position 超过了文件末尾,再写入时在新内容和原末尾之间会有空洞(00)
(7)强制写入
操作系统出于性能的考虑,会将数据缓存,不是立刻写入磁盘,而是等到缓存满了以后将所有数据一次性的写入磁盘。可以调用 force(true) 方法将文件内容和元数据(文件的权限等信息)立刻写入磁盘
inputChannel.force(true);
2、两个 channel 传输数据
transferTo
底层使用了零拷贝技术,用于两个 channel
之间传输数据
try (FileInputStream fis = new FileInputStream("stu.txt");
FileOutputStream fos = new FileOutputStream("student.txt");
FileChannel inputChannel = fis.getChannel();
FileChannel outputChannel = fos.getChannel()) {
// 参数:inputChannel的起始位置,传输数据的大小,目的channel
// 返回值为传输的数据的字节数
// transferTo一次只能传输2G的数据
inputChannel.transferTo(0, inputChannel.size(), outputChannel);
} catch (IOException e) {
e.printStackTrace();
}
当传输的文件大于2G时,需要使用以下方法进行多次传输
try(
FileChannel from = new FileInputStream("from.txt").getChannel();
FileChannel to = new FileOutputStream("to.txt").getChannel()
){
// 效率高,底层会利用操作系统的零拷贝进行优化,最大传输 2g 数据
long size = from.size();
// left 变量代表还剩余多少字节
for (long left = size; left > 0; ) {
System.out.println("position:" + (size - left) + " left:" + left);
left -= from.transferTo((size - left), left, to);
}
}catch (Exception e){
e.printStackTrace();
}
3、Path与Paths
- Path 用来表示文件路径
- Paths 是工具类,用来获取 Path 实例
- JDK1.7 引入的
Path source = Paths.get("1.txt"); // 相对路径 不带盘符 使用 user.dir 环境变量来定位1.txt
Path source = Paths.get("d:\\1.txt"); // 绝对路径 代表了 d:\1.txt 反斜杠需要转义
Path source = Paths.get("d:/1.txt"); // 绝对路径 同样代表了 d:\1.txt
Path projects = Paths.get("d:\\data", "projects"); // 代表了 d:\data\projects
.
代表了当前路径..
代表了上一级路径
Path path = Paths.get("d:\\data\\projects\\a\\..\\b");
System.out.println(path);
System.out.println(path.normalize()); // 正常化路径 会去除 . 以及 ..
4、Files
(1)查找文件是否存在
Path path = Paths.get("helloword/data.txt");
System.out.println(Files.exists(path));
(2)创建目录
创建一级目录
Path path = Paths.get("helloword/d1");
Files.createDirectory(path);
- 如果目录已存在,会抛异常
FileAlreadyExistsException
- 不能一次创建多级目录,否则会抛异常
NoSuchFileException
创建多级目录用
Path path = Paths.get("helloword/d1/d2");
Files.createDirectories(path);
(3)拷贝、移动文件
拷贝文件
Path source = Paths.get("helloword/data.txt");
Path target = Paths.get("helloword/target.txt");
Files.copy(source, target);
- 如果文件已存在,会抛异常
FileAlreadyExistsException
如果希望用 source
覆盖掉 target
,需要用 StandardCopyOption
来控制
Files.copy(source, target, StandardCopyOption.REPLACE_EXISTING);
移动文件
Path source = Paths.get("helloword/data.txt");
Path target = Paths.get("helloword/data.txt");
Files.move(source, target, StandardCopyOption.ATOMIC_MOVE);
- StandardCopyOption.ATOMIC_MOVE 保证文件移动的原子性
(4)删除
删除文件
Path target = Paths.get("helloword/target.txt");
Files.delete(target);
- 如果文件不存在,会抛异常
NoSuchFileException
删除目录
Path target = Paths.get("helloword/d1");
Files.delete(target);
- 如果目录还有内容,会抛异常
DirectoryNotEmptyException
(5)遍历
可以使用Files工具类中的walkFileTree(Path, FileVisitor)方法,其中需要传入两个参数
Path
:文件起始路径FileVisitor
:文件访问器,使用访问者模式
接口的实现类
SimpleFileVisitor
有四个方法
preVisitDirectory
:访问目录前的操作visitFile
:访问文件的操作visitFileFailed
:访问文件失败时的操作postVisitDirectory
:访问目录后的操作
public class TestWalkFileTree {
public static void main(String[] args) throws IOException {
Path path = Paths.get("F:\\JDK 8");
// 文件目录数目
AtomicInteger dirCount = new AtomicInteger();
// 文件数目
AtomicInteger fileCount = new AtomicInteger();
Files.walkFileTree(path, new SimpleFileVisitor<Path>(){
// 访问目录前的操作
@Override
public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes attrs) throws IOException {
System.out.println("===>"+dir);
// 增加文件目录数
dirCount.incrementAndGet();
return super.preVisitDirectory(dir, attrs);
}
// 访问文件的操作
@Override
public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) throws IOException {
System.out.println(file);
// 增加文件数
fileCount.incrementAndGet();
return super.visitFile(file, attrs);
}
});
// 打印数目
System.out.println("文件目录数:"+dirCount.get());
System.out.println("文件数:"+fileCount.get());
}
}Copy
运行结果如下
...
===>F:\JDK 8\lib\security\policy\unlimited
F:\JDK 8\lib\security\policy\unlimited\local_policy.jar
F:\JDK 8\lib\security\policy\unlimited\US_export_policy.jar
F:\JDK 8\lib\security\trusted.libraries
F:\JDK 8\lib\sound.properties
F:\JDK 8\lib\tzdb.dat
F:\JDK 8\lib\tzmappings
F:\JDK 8\LICENSE
F:\JDK 8\README.txt
F:\JDK 8\release
F:\JDK 8\THIRDPARTYLICENSEREADME-JAVAFX.txt
F:\JDK 8\THIRDPARTYLICENSEREADME.txt
F:\JDK 8\Welcome.html
文件目录数:23
文件数:279
(6)判断文件后缀
boolean b = file.toString().endWith(".jar");
(7)删除多级目录
Path path = Paths.get("d:\\a");
Files.walkFileTree(path, new SimpleFileVisitor<Path>(){
@Override
public FileVisitResult visitFile(Path file, BasicFileAttributes attrs)
throws IOException {
Files.delete(file);
return super.visitFile(file, attrs);
}
@Override
public FileVisitResult postVisitDirectory(Path dir, IOException exc)
throws IOException {
Files.delete(dir);
return super.postVisitDirectory(dir, exc);
}
});
删除是危险操作,确保要递归删除的文件夹没有重要内容
(8)拷贝多级目录
long start = System.currentTimeMillis();
String source = "D:\\Snipaste-1.16.2-x64";
String target = "D:\\Snipaste-1.16.2-x64aaa";
Files.walk(Paths.get(source)).forEach(path -> {
try {
String targetName = path.toString().replace(source, target);
// 是目录
if (Files.isDirectory(path)) {
Files.createDirectory(Paths.get(targetName));
}
// 是普通文件
else if (Files.isRegularFile(path)) {
Files.copy(path, Paths.get(targetName));
}
} catch (IOException e) {
e.printStackTrace();
}
});
long end = System.currentTimeMillis();
System.out.println(end - start);
五、NIO - 网络编程
1、阻塞模式
- 阻塞模式下,相关方法都会导致线程暂停
ServerSocketChannel.accept
会在没有连接建立时让线程暂停SocketChannel.read
会在通道中没有数据可读时让线程暂停- 阻塞的表现其实就是线程暂停了,暂停期间不会占用 cpu,但线程相当于闲置
- 单线程下,阻塞方法之间相互影响,几乎不能正常工作,需要多线程支持
- 但多线程下,有新的问题,体现在以下方面
- 32 位 jvm 一个线程 320k,64 位 jvm 一个线程 1024k,如果连接数过多,必然导致 OOM,并且线程太多,反而会因为频繁上下文切换导致性能降低
- 可以采用线程池技术来减少线程数和线程上下文切换,但治标不治本,如果有很多连接建立,但长时间 inactive,会阻塞线程池中所有线程,因此不适合长连接,只适合短连接
(1)服务端
public class Server {
public static void main(String[] args) {
// 创建缓冲区
ByteBuffer buffer = ByteBuffer.allocate(16);
// 获得服务器通道
try(ServerSocketChannel server = ServerSocketChannel.open()) {
// 为服务器通道绑定端口
server.bind(new InetSocketAddress(8080));
// 用户存放连接的集合
ArrayList<SocketChannel> channels = new ArrayList<>();
// 循环接收连接
while (true) {
System.out.println("before connecting...");
// 没有连接时,会阻塞线程
SocketChannel socketChannel = server.accept();
System.out.println("after connecting...");
channels.add(socketChannel);
// 循环遍历集合中的连接
for(SocketChannel channel : channels) {
System.out.println("before reading");
// 处理通道中的数据
// 当通道中没有数据可读时,会阻塞线程
channel.read(buffer);
buffer.flip();
ByteBufferUtil.debugRead(buffer);
buffer.clear();
System.out.println("after reading");
}
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
(2)客户端
public class Client {
public static void main(String[] args) {
try (SocketChannel socketChannel = SocketChannel.open()) {
// 建立连接
socketChannel.connect(new InetSocketAddress("localhost", 8080));
System.out.println("waiting...");
} catch (IOException e) {
e.printStackTrace();
}
}
}
(3)运行结果
客户端-服务器建立连接前:服务器端因accept阻塞
客户端-服务器建立连接后,客户端发送消息前:服务器端因通道为空被阻塞
客户端发送数据后,服务器处理通道中的数据。再次进入循环时,再次被accept阻塞
之前的客户端再次发送消息,服务器端因为被accept阻塞,无法处理之前客户端发送到通道中的信息
2、非阻塞模式
- 可以通过
ServerSocketChannel
的configureBlocking(false)
方法将获得连接设置为非阻塞的。此时若没有连接,accept会返回null - 可以通过
SocketChannel
的configureBlocking(false)
方法将从通道中读取数据设置为非阻塞的。若此时通道中没有数据可读,read会返回-1
(1)服务端
public class Server {
public static void main(String[] args) {
// 创建缓冲区
ByteBuffer buffer = ByteBuffer.allocate(16);
// 获得服务器通道
try(ServerSocketChannel server = ServerSocketChannel.open()) {
// 为服务器通道绑定端口
server.bind(new InetSocketAddress(8080));
// 用户存放连接的集合
ArrayList<SocketChannel> channels = new ArrayList<>();
// 循环接收连接
while (true) {
// 设置为非阻塞模式,没有连接时返回null,不会阻塞线程
server.configureBlocking(false);
SocketChannel socketChannel = server.accept();
// 通道不为空时才将连接放入到集合中
if (socketChannel != null) {
System.out.println("after connecting...");
channels.add(socketChannel);
}
// 循环遍历集合中的连接
for(SocketChannel channel : channels) {
// 处理通道中的数据
// 设置为非阻塞模式,若通道中没有数据,会返回0,不会阻塞线程
channel.configureBlocking(false);
int read = channel.read(buffer);
if(read > 0) {
buffer.flip();
ByteBufferUtil.debugRead(buffer);
buffer.clear();
System.out.println("after reading");
}
}
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
(2)客户端
同阻塞模式
(3)结论
这样写虽然解决了阻塞模式下并发量的问题,但仍存在一个问题,因为设置为了非阻塞,会一直执行 while(true)
中的代码,CPU一直处于忙碌状态,会使得性能变低,所以实际情况中不使用这种方法处理请求
六、selector(选择器)
1、基本介绍
Java
的NIO
,用非阻塞的IO
方式。可以用一个线程,处理多个的客户端连接,就会使用到Selector
(选择器)。Selector
能够检测多个注册的通道上是否有事件发生(注意:多个Channel
以事件的方式可以注册到同一个Selector
),如果有事件发生,便获取事件然后针对每个事件进行相应的处理。这样就可以只用一个单线程去管理多个通道,也就是管理多个连接和请求。- 只有在连接/通道真正有读写事件发生时,才会进行读写,就大大地减少了系统开销,并且不必为每个连接都创建一个线程,不用去维护多个线程。
- 避免了多线程之间的上下文切换导致的开销。
好处
- 一个线程配合 selector 就可以监控多个 channel 的事件,事件发生线程才去处理。避免非阻塞模式下所做无用功(CPU 空转 - 死循环)
- 让这个线程能够被充分利用
- 节约了线程的数量
- 减少了线程上下文切换导致的开销。

说明如下:
Netty
的IO
线程NioEventLoop
聚合了Selector
(选择器,也叫多路复用器),可以同时并发处理成百上千个客户端连接。- 当线程从某客户端
Socket
通道进行读写数据时,若没有数据可用时,该线程可以进行其他任务。 - 线程通常将非阻塞
IO
的空闲时间用于在其他通道上执行IO
操作,所以单独的线程可以管理多个输入和输出通道。 - 由于读写操作都是非阻塞的,这就可以充分提升
IO
线程的运行效率,避免由于频繁I/O
阻塞导致的线程挂起。 - 一个
I/O
线程可以并发处理N
个客户端连接和读写操作,这从根本上解决了传统同步阻塞I/O
一连接一线程模型,架构的性能、弹性伸缩能力和可靠性都得到了极大的提升。
多路复用
单线程可以配合 Selector 完成对多个 Channel 可读写事件的监控,这称之为多路复用
- 多路复用仅针对网络 IO,普通文件 IO 无法利用多路复用
- 如果不用 Selector 的非阻塞模式,线程大部分时间都在做无用功,而 Selector 能够保证
- 有可连接事件时才去连接
- 有可读事件才去读取
- 有可写事件才去写入
- 限于网络传输能力,Channel 未必时时可写,一旦 Channel 可写,会触发 Selector 的可写事件
2、组件
【1】SelectionKey
SelectionKey
,表示 Selector
和网络通道的注册关系,共四种:
int OP_ACCEPT
:有新的网络连接可以accept
,值为16
int OP_CONNECT
:代表连接已经建立,值为8
int OP_READ
:代表读操作,值为1
int OP_WRITE
:代表写操作,值为4
源码中:
public static final int OP_READ = 1 << 0;
public static final int OP_WRITE = 1 << 2;
public static final int OP_CONNECT = 1 << 3;
public static final int OP_ACCEPT = 1 << 4;
SelectionKey
相关方法
【2】ServerSocketChannel
ServerSocketChannel
在服务器端监听新的客户端Socket
连接- 相关方法如下
【3】SocketChannel
SocketChannel
,网络IO
通道,具体负责进行读写操作。NIO
把缓冲区的数据写入通道,或者把通道里的数据读到缓冲区。- 相关方法如下
3、Selector API
// 1. 创建 selector, 管理多个 channel
Selector selector = Selector.open();
// 2. 建立 selector 和 channel 的联系(注册)
// SelectionKey 就是将来事件发生后,通过它可以知道事件和哪个channel的事件
SelectionKey sscKey = ssc.register(selector, 0, null);
// 3. key 只关注 accept 事件,指定key只关注的事件,
// OP_ACCEPT、OP_CONNECT、OP_WRITE、OP_READ
sscKey.interestOps(SelectionKey.OP_ACCEPT);
// 4. select 方法, 没有事件发生,线程阻塞,有事件,线程才会恢复运行
// select 在事件未处理时,它不会阻塞, 事件发生后要么处理,要么取消,不能置之不理
selector.select();
// 5. 处理事件, selectedKeys 内部包含了所有发生的事件
// selector.selectedKeys(): 获取所有可用的事件集
Iterator<SelectionKey> iter = selector.selectedKeys().iterator();
【1】创建
Selector selector = Selector.open();
【2】绑定 Channel 事件
也称之为注册事件,绑定的事件 selector 才会关心
channel.configureBlocking(false);
SelectionKey key = channel.register(selector, 绑定事件);
- channel 必须工作在非阻塞模式
- FileChannel 没有非阻塞模式,因此不能配合 selector 一起使用
- 绑定的事件类型可以有
- connect - 客户端连接成功时触发
- accept - 服务器端成功接受连接时触发
- read - 数据可读入时触发,有因为接收能力弱,数据暂不能读入的情况
- write - 数据可写出时触发,有因为发送能力弱,数据暂不能写出的情况
【3】监听 Channel 事件
可以通过下面三种方法来监听是否有事件发生,方法的返回值代表有多少 channel 发生了事件
方法1,阻塞直到绑定事件发生
int count = selector.select();
方法2,阻塞直到绑定事件发生,或是超时(时间单位为 ms)
int count = selector.select(long timeout);
方法3,不会阻塞,也就是不管有没有事件,立刻返回,自己根据返回值检查是否有事件
int count = selector.selectNow();
【4】select 何时不阻塞
- 事件发生时
- 客户端发起连接请求,会触发 accept 事件
- 客户端发送数据过来,客户端正常、异常关闭时,都会触发 read 事件,另外如果发送的数据大于 buffer 缓冲区,会触发多次读取事件
- channel 可写,会触发 write 事件
- 在 linux 下 nio bug 发生时
- 调用 selector.wakeup()
- 调用 selector.close()
- selector 所在线程 interrupt
4、服务端 - 可读
服务端代码
public static void main(String[] args) {
// 获得服务器通道
try(ServerSocketChannel server = ServerSocketChannel.open()){
// 绑定端口
server.bind(new InetSocketAddress(8080));
// 创建选择器
Selector selector = Selector.open();
// 设置为非阻塞模式
server.configureBlocking(false);
// 将通道注册到选择器中,并设置事件
SelectionKey serverKey = server.register(selector, SelectionKey.OP_ACCEPT);
while(true){
// 事件监听,若没有事件准备就绪,线程会被阻塞,反之不会被阻塞,从而避免CPU空转
// 返回值为事件个数
int ready = selector.select();
System.out.println("准备就绪的事件个数:" + ready);
// 获取所有事件,SelectionKey:表示SelectableChannel在 Selector 中的注册的标记
Set<SelectionKey> selectionKeys = selector.selectedKeys();
// 使用迭代器遍历对象,因为会涉及元素的删除,所以要用迭代器
Iterator<SelectionKey> iterator = selectionKeys.iterator();
while (iterator.hasNext()){
SelectionKey key = iterator.next();
// 判断 key 的类型
if (key.isAcceptable()){
// 连接事件
// 获得 key 对应的 channel
ServerSocketChannel channel = (ServerSocketChannel)key.channel();
System.out.println("before accepting ... ");
// 获取连接
SocketChannel socketChannel = channel.accept();
System.out.println("after accepting ...");
// 设置为非阻塞模式,同时将连接的通道也注册到选择器中,同时设置附件 为buffer
socketChannel.configureBlocking(false);
ByteBuffer buffer = ByteBuffer.allocate(16);
socketChannel.register(selector,SelectionKey.OP_READ,buffer);
// 处理完毕后移除
iterator.remove();
}else if (key.isReadable()){
try{
// 可读事件
SocketChannel channel = (SocketChannel)key.channel();
System.out.println("before read ... ");
// 通过 key 获得附件(buffer)
ByteBuffer buffer = (ByteBuffer) key.attachment();
// 读取客户端输入
int read = channel.read(buffer);
buffer.flip();
System.out.println(read);
ByteBufferUtil.debugAll(buffer);
System.out.println(StandardCharsets.UTF_8.decode(buffer).toString());
if (read == -1){
key.cancel();
channel.close();
}else{
// 通过分隔符来分隔buffer中的数据
split(buffer);
// 如果缓冲区太小,就进行扩容
if (buffer.position() == buffer.limit()){
ByteBuffer newBuffer = ByteBuffer.allocate(buffer.capacity() * 2);
// 将旧的buffer的内容放到新的buffer中
buffer.flip();
newBuffer.put(buffer);
// 将新的buffer放到key中作为附件
key.attach(newBuffer);
}
}
System.out.println("after reading...");
// 处理完毕 移除
iterator.remove();
}catch (IOException e){
e.printStackTrace();
// 客户端异常断开的情况下,移除key
key.cancel();
}
}
}
}
}catch (IOException e){
e.printStackTrace();
}
}
private static void split(ByteBuffer buffer) {
buffer.flip();
for(int i = 0; i < buffer.limit(); i++) {
// 遍历寻找分隔符
// get(i)不会移动position
if (buffer.get(i) == '\n') {
// 缓冲区长度
int length = i+1-buffer.position();
ByteBuffer target = ByteBuffer.allocate(length);
// 将前面的内容写入target缓冲区
for(int j = 0; j < length; j++) {
// 将buffer中的数据写入target中
target.put(buffer.get());
}
// 打印结果
ByteBufferUtil.debugAll(target);
}
}
// 切换为写模式,但是缓冲区可能未读完,这里需要使用compact
buffer.compact();
}
对于上面的代码将根据事件拆分进行分析
客户端
public static void main(String[] args) throws InterruptedException {
try (SocketChannel socketChannel = SocketChannel.open()) {
// 建立连接
socketChannel.connect(new InetSocketAddress("localhost", 8080));
System.out.println("waiting...");
// 写入数据
socketChannel.write(Charset.defaultCharset().encode("1234567890"));
} catch (IOException e) {
e.printStackTrace();
}
}
【1】Accpet事件
步骤解析
- 获得选择器Selector
Selector selector = Selector.open();
- 将通道设置为非阻塞模式,并注册到选择器中,并设置感兴趣的事件
- channel 必须工作在非阻塞模式
- FileChannel 没有非阻塞模式,因此不能配合 selector 一起使用
- 绑定的事件类型,可以有
- connect - 客户端连接成功时触发
- accept - 服务器端成功接受连接时触发
- read - 数据可读入时触发,有因为接收能力弱,数据暂不能读入的情况
- write - 数据可写出时触发,有因为发送能力弱,数据暂不能写出的情况
// 通道必须设置为非阻塞模式
server.configureBlocking(false);
// 将通道注册到选择器中,并设置感兴趣的实践
server.register(selector, SelectionKey.OP_ACCEPT);
通过Selector监听事件,并获得就绪的通道个数,若没有通道就绪,线程会被阻塞
阻塞直到绑定事件发生
int count = selector.select();
阻塞直到绑定事件发生,或是超时(时间单位为 ms)
int count = selector.select(long timeout);
不会阻塞,也就是不管有没有事件,立刻返回,自己根据返回值检查是否有事件
int count = selector.selectNow();
获取就绪事件并得到对应的通道,然后进行处理
// 获取所有事件
Set<SelectionKey> selectionKeys = selector.selectedKeys();
// 使用迭代器遍历事件
Iterator<SelectionKey> iterator = selectionKeys.iterator();
while (iterator.hasNext()) {
SelectionKey key = iterator.next();
// 判断key的类型,此处为Accept类型
if(key.isAcceptable()) {
// 获得key对应的channel
ServerSocketChannel channel = (ServerSocketChannel) key.channel();
// 获取连接并处理,而且是必须处理,否则需要取消
SocketChannel socketChannel = channel.accept();
// 处理完毕后移除
iterator.remove();
}
}
事件发生后能否不处理
事件发生后,要么处理,要么取消(cancel),不能什么都不做,否则下次该事件仍会触发,这是因为 nio 底层使用的是水平触发
【2】Read事件
- 在Accept事件中,若有客户端与服务器端建立了连接,需要将其对应的SocketChannel设置为非阻塞,并注册到选择其中
- 添加Read事件,触发后进行读取操作
// 通道必须设置为非阻塞模式
server.configureBlocking(false);
// 将通道注册到选择器中,并设置感兴趣的事件
server.register(selector, SelectionKey.OP_ACCEPT);
【3】删除事件
当处理完一个事件后,一定要调用迭代器的remove方法移除对应事件,否则会出现错误。原因如下
以我们上面的 Read事件 的代码为例
- 当调用了
server.register(selector, SelectionKey.OP_ACCEPT)
后,Selector中维护了一个集合,用于存放SelectionKey以及其对应的通道
// WindowsSelectorImpl 中的 SelectionKeyImpl数组
private SelectionKeyImpl[] channelArray = new SelectionKeyImpl[8];
public class SelectionKeyImpl extends AbstractSelectionKey {
// Key对应的通道
final SelChImpl channel;
...
}
当选择器中的通道对应的事件发生后,selecionKey
会被放到另一个集合中,但是selecionKey不会自动移除,所以需要我们在处理完一个事件后,通过迭代器手动移除其中的selecionKey。否则会导致已被处理过的事件再次被处理,就会引发错误.

💡 为何要 iter.remove()
因为 select 在事件发生后,就会将相关的 key 放入 selectedKeys 集合,但不会在处理完后从 selectedKeys 集合中移除,需要我们自己编码删除。例如
- 第一次触发了 ssckey 上的 accept 事件,没有移除 ssckey
- 第二次触发了 sckey 上的 read 事件,但这时 selectedKeys 中还有上次的 ssckey ,在处理时因为没有真正的 serverSocket 连上了,就会导致空指针异常
💡 cancel 的作用
cancel 会取消注册在 selector 上的 channel,并从 keys 集合中删除 key 后续不会再监听事件
【4】断开处理
当客户端与服务器之间的连接断开时,会给服务器端发送一个读事件,对异常断开和正常断开需要加以不同的方式进行处理
- 正常断开
- 正常断开时,服务器端的channel.read(buffer)方法的返回值为-1,所以当结束到返回值为-1时,需要调用key的cancel方法取消此事件,并在取消后移除该事件
int read = channel.read(buffer);
// 断开连接时,客户端会向服务器发送一个写事件,此时read的返回值为-1
if(read == -1) {
// 取消该事件的处理
key.cancel();
channel.close();
} else {
...
}
// 取消或者处理,都需要移除key
iterator.remove();
- 异常断开
- 异常断开时,会抛出IOException异常, 在try-catch的catch块中捕获异常并调用key的cancel方法即可
【5】消息边界
不处理消息边界存在的问题
将缓冲区的大小设置为4个字节,发送2个汉字(你好),通过decode解码并打印时,会出现乱码
ByteBuffer buffer = ByteBuffer.allocate(4);
// 解码并打印
System.out.println(StandardCharsets.UTF_8.decode(buffer));
输出
你�
��
这是因为UTF-8字符集下,1个汉字占用3个字节,此时缓冲区大小为4个字节,一次读时间无法处理完通道中的所有数据,所以一共会触发两次读事件。这就导致 你好
的 好
字被拆分为了前半部分和后半部分发送,解码时就会出现问题。
传输的文本可能有以下三种情况
- 文本大于缓冲区大小
- 此时需要将缓冲区进行扩容
- 发生半包现象
- 发生粘包现象
解决思路大致有以下三种
固定消息长度,数据包大小一样,服务器按预定长度读取,当发送的数据较少时,需要将数据进行填充,直到长度与消息规定长度一致。缺点是浪费带宽
另一种思路是按分隔符拆分,缺点是效率低,需要一个一个字符地去匹配分隔符
TLV 格式,即 Type 类型、Length 长度、Value 数据(用的最多,Netty部分再介绍)
(也就是在消息开头用一些空间存放后面数据的长度),如HTTP请求头中的Content-Type与Content-Length。类型和长度已知的情况下,就可以方便获取消息大小,分配合适的 buffer,缺点是 buffer 需要提前分配,如果内容过大,则影响 server 吞吐量
- Http 1.1 是 TLV 格式
- Http 2.0 是 LTV 格式
下文的消息边界处理方式为第二种:按分隔符拆分
附件与扩容
Channel的register方法还有第三个参数:附件
,可以向其中放入一个Object类型的对象,该对象会与登记的Channel以及其对应的SelectionKey绑定,可以从SelectionKey获取到对应通道的附件
public final SelectionKey register(Selector sel, int ops, Object att)
可通过SelectionKey
的attachment()
方法获得附件
ByteBuffer buffer = (ByteBuffer) key.attachment();Copy
可通过SelectionKey
的attach()
设置新的附件,替换旧附件
scKey.attach(ByteBuffer byteBuffer);
我们需要在Accept事件发生后,将通道注册到Selector中时,对每个通道添加一个ByteBuffer附件,让每个通道发生读事件时都使用自己的通道,避免与其他通道发生冲突而导致问题
// 设置为非阻塞模式,同时将连接的通道也注册到选择其中,同时设置附件
socketChannel.configureBlocking(false);
ByteBuffer buffer = ByteBuffer.allocate(16);
// 添加通道对应的Buffer附件
socketChannel.register(selector, SelectionKey.OP_READ, buffer);
当Channel中的数据大于缓冲区时,需要对缓冲区进行扩容操作。此代码中的扩容的判定方法:Channel调用compact方法后,的position与limit相等,说明缓冲区中的数据并未被读取(容量太小),此时创建新的缓冲区,其大小扩大为两倍。同时还要将旧缓冲区中的数据拷贝到新的缓冲区中,同时调用SelectionKey的attach方法将新的缓冲区作为新的附件放入SelectionKey中
// 如果缓冲区太小,就进行扩容
if (buffer.position() == buffer.limit()) {
ByteBuffer newBuffer = ByteBuffer.allocate(buffer.capacity()*2);
// 将旧buffer中的内容放入新的buffer中
ewBuffer.put(buffer);
// 将新buffer作为附件放到key中
key.attach(newBuffer);
}
【6】ByteBuffer大小
- 每个 channel 都需要记录可能被切分的消息,因为 ByteBuffer 不能被多个 channel 共同使用,因此需要为每个 channel 维护一个独立的 ByteBuffer
- ByteBuffer 不能太大,比如一个 ByteBuffer 1Mb 的话,要支持百万连接就要 1Tb 内存,因此需要设计大小可变的 ByteBuffer
- 分配思路可以参考
- 一种思路是首先分配一个较小的 buffer,例如 4k,如果发现数据不够,再分配 8k 的 buffer,将 4k buffer 内容拷贝至 8k buffer,优点是消息连续容易处理,缺点是数据拷贝耗费性能
- 另一种思路是用多个数组组成 buffer,一个数组不够,把多出来的内容写入新的数组,与前面的区别是消息存储不连续解析复杂,优点是避免了拷贝引起的性能损耗
5、服务端 - 可写事件
服务器通过Buffer向通道中写入数据时,可能因为通道容量小于Buffer中的数据大小,导致无法一次性将Buffer中的数据全部写入到Channel中,这时便需要分多次写入,具体步骤如下
执行一次写操作,向将buffer中的内容写入到SocketChannel中,然后判断Buffer中是否还有数据
若Buffer中还有数据,则需要将SockerChannel注册到Seletor中,并关注写事件,同时将未写完的Buffer作为附件一起放入到SelectionKey中
int write = socket.write(buffer); // 通道中可能无法放入缓冲区中的所有数据 if (buffer.hasRemaining()) { // 注册到Selector中,关注可写事件,并将buffer添加到key的附件中 socket.configureBlocking(false); socket.register(selector, SelectionKey.OP_WRITE, buffer); }Copy
添加写事件的相关操作
key.isWritable()
,对Buffer再次进行写操作- 每次写后需要判断Buffer中是否还有数据(是否写完)。若写完,需要移除SelecionKey中的Buffer附件,避免其占用过多内存,同时还需移除对写事件的关注
SocketChannel socket = (SocketChannel) key.channel(); // 获得buffer ByteBuffer buffer = (ByteBuffer) key.attachment(); // 执行写操作 int write = socket.write(buffer); System.out.println(write); // 如果已经完成了写操作,需要移除key中的附件,同时不再对写事件感兴趣 if (!buffer.hasRemaining()) { key.attach(null); key.interestOps(0); }Copy
服务端整体代码如下
public class WriteServer {
public static void main(String[] args) {
try(ServerSocketChannel server = ServerSocketChannel.open()) {
server.bind(new InetSocketAddress(8080));
server.configureBlocking(false);
Selector selector = Selector.open();
server.register(selector, SelectionKey.OP_ACCEPT);
while (true) {
selector.select();
Set<SelectionKey> selectionKeys = selector.selectedKeys();
Iterator<SelectionKey> iterator = selectionKeys.iterator();
while (iterator.hasNext()) {
SelectionKey key = iterator.next();
// 处理后就移除事件
iterator.remove();
if (key.isAcceptable()) {
// 获得客户端的通道
SocketChannel socket = server.accept();
// 写入数据
StringBuilder builder = new StringBuilder();
for(int i = 0; i < 500000000; i++) {
builder.append("a");
}
ByteBuffer buffer = StandardCharsets.UTF_8.encode(builder.toString());
// 先执行一次Buffer->Channel的写入,如果未写完,就添加一个可写事件
int write = socket.write(buffer);
System.out.println(write);
// 通道中可能无法放入缓冲区中的所有数据
if (buffer.hasRemaining()) {
// 注册到Selector中,关注可写事件,并将buffer添加到key的附件中
socket.configureBlocking(false);
socket.register(selector, SelectionKey.OP_WRITE, buffer);
}
} else if (key.isWritable()) {
SocketChannel socket = (SocketChannel) key.channel();
// 获得buffer
ByteBuffer buffer = (ByteBuffer) key.attachment();
// 执行写操作
int write = socket.write(buffer);
System.out.println(write);
// 如果已经完成了写操作,需要移除key中的附件,同时不再对写事件感兴趣
if (!buffer.hasRemaining()) {
key.attach(null);
key.interestOps(0);
}
}
}
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
客户端代码
public class WriteClient {
public static void main(String[] args) throws IOException {
SocketChannel sc = SocketChannel.open();
sc.connect(new InetSocketAddress("localhost", 8080));
ByteBuffer buffer = ByteBuffer.allocate(1024 * 1024);
// 3. 接收数据
int count = 0;
while (true) {
count += sc.read(buffer);
System.out.println(count);
buffer.clear();
}
}
}
6、组件关系分析
NIO
非阻塞网络编程相关的(Selector
、SelectionKey
、ServerScoketChannel
和 SocketChannel
)关系梳理图
- 当客户端连接时,会通过
ServerSocketChannel
得到SocketChannel
。 Selector
进行监听select
方法,返回有事件发生的通道的个数。- 将
socketChannel
注册到Selector
上,register(Selector sel, int ops)
,一个Selector
上可以注册多个SocketChannel
。 - 注册后返回一个
SelectionKey
,会和该Selector
关联(集合)。 - 进一步得到各个
SelectionKey
(有事件发生)。 - 在通过
SelectionKey
反向获取SocketChannel
,方法channel()
。 - 可以通过得到的
channel
,完成业务处理。
七、多线程下的 NIO
1、基本模型

充分利用多核CPU,分两组选择器
- 单线程配一个选择器(Boss),专门处理 accept 事件(建立连接)
- 创建 cpu 核心数的线程(Worker),每个线程配一个选择器,轮流处理 read 事件
2、实现思路
创建一个负责处理Accept事件的Boss线程,与多个负责处理Read事件的Worker线程
Boss线程执行的操作
接受并处理Accepet事件,当Accept事件发生后,调用Worker的register(SocketChannel socket)方法,让Worker去处理Read事件,其中需要根据标识robin去判断将任务分配给哪个Worker
// 创建固定数量的Worker Worker[] workers = new Worker[4]; // 用于负载均衡的原子整数 AtomicInteger robin = new AtomicInteger(0); // 负载均衡,轮询分配Worker workers[robin.getAndIncrement()% workers.length].register(socket);
register(SocketChannel socket)方法会通过同步队列完成Boss线程与Worker线程之间的通信,让SocketChannel的注册任务被Worker线程执行。添加任务后需要调用selector.wakeup()来唤醒被阻塞的Selector
public void register(final SocketChannel socket) throws IOException { // 只启动一次 if (!started) { // 初始化操作 } // 向同步队列中添加SocketChannel的注册事件 // 在Worker线程中执行注册事件 queue.add(new Runnable() { @Override public void run() { try { socket.register(selector, SelectionKey.OP_READ); } catch (IOException e) { e.printStackTrace(); } } }); // 唤醒被阻塞的Selector // select类似LockSupport中的park,wakeup的原理类似LockSupport中的unpark selector.wakeup(); }
Worker线程执行的操作
- 从同步队列中获取注册任务,并处理Read事件
3、如何拿到 cpu 个数
- Runtime.getRuntime().availableProcessors() 如果工作在 docker 容器下,因为容器不是物理隔离的,会拿到物理 cpu 个数,而不是容器申请时的个数
- 这个问题直到 jdk 10 才修复,使用 jvm 参数 UseContainerSupport 配置, 默认开启
4、实现代码
public class ThreadsServer {
public static void main(String[] args) {
try (ServerSocketChannel server = ServerSocketChannel.open()) {
// 当前线程为Boss线程
Thread.currentThread().setName("Boss");
server.bind(new InetSocketAddress(8080));
// 负责轮询Accept事件的Selector
Selector boss = Selector.open();
server.configureBlocking(false);
server.register(boss, SelectionKey.OP_ACCEPT);
// 创建固定数量的Worker
Worker[] workers = new Worker[4];
// 用于负载均衡的原子整数
AtomicInteger robin = new AtomicInteger(0);
for(int i = 0; i < workers.length; i++) {
workers[i] = new Worker("worker-"+i);
}
while (true) {
boss.select();
Set<SelectionKey> selectionKeys = boss.selectedKeys();
Iterator<SelectionKey> iterator = selectionKeys.iterator();
while (iterator.hasNext()) {
SelectionKey key = iterator.next();
iterator.remove();
// BossSelector负责Accept事件
if (key.isAcceptable()) {
// 建立连接
SocketChannel socket = server.accept();
System.out.println("connected...");
socket.configureBlocking(false);
// socket注册到Worker的Selector中
System.out.println("before read...");
// 负载均衡,轮询分配Worker
workers[robin.getAndIncrement()% workers.length].register(socket);
System.out.println("after read...");
}
}
}
} catch (IOException e) {
e.printStackTrace();
}
}
static class Worker implements Runnable {
private Thread thread;
private volatile Selector selector;
private String name;
private volatile boolean started = false;
/**
* 同步队列,用于Boss线程与Worker线程之间的通信
*/
private ConcurrentLinkedQueue<Runnable> queue;
public Worker(String name) {
this.name = name;
}
public void register(final SocketChannel socket) throws IOException {
// 只启动一次
if (!started) {
thread = new Thread(this, name);
selector = Selector.open();
queue = new ConcurrentLinkedQueue<>();
thread.start();
started = true;
}
// 向同步队列中添加SocketChannel的注册事件
// 在Worker线程中执行注册事件
queue.add(new Runnable() {
@Override
public void run() {
try {
socket.register(selector, SelectionKey.OP_READ);
} catch (IOException e) {
e.printStackTrace();
}
}
});
// 唤醒被阻塞的Selector
// select类似LockSupport中的park,wakeup的原理类似LockSupport中的unpark
selector.wakeup();
}
@Override
public void run() {
while (true) {
try {
selector.select();
// 通过同步队列获得任务并运行
Runnable task = queue.poll();
if (task != null) {
// 获得任务,执行注册操作
task.run();
}
Set<SelectionKey> selectionKeys = selector.selectedKeys();
Iterator<SelectionKey> iterator = selectionKeys.iterator();
while(iterator.hasNext()) {
SelectionKey key = iterator.next();
iterator.remove();
// Worker只负责Read事件
if (key.isReadable()) {
// 简化处理,省略细节
SocketChannel socket = (SocketChannel) key.channel();
ByteBuffer buffer = ByteBuffer.allocate(16);
socket.read(buffer);
buffer.flip();
ByteBufferUtil.debugAll(buffer);
}
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
}
八、UDP
- UDP 是无连接的,client 发送数据不会管 server 是否开启
- server 这边的 receive 方法会将接收到的数据存入 byte buffer,但如果数据报文超过 buffer 大小,多出来的数据会被默默抛弃
首先启动服务器端
public class UdpServer {
public static void main(String[] args) {
try (DatagramChannel channel = DatagramChannel.open()) {
channel.socket().bind(new InetSocketAddress(9999));
System.out.println("waiting...");
ByteBuffer buffer = ByteBuffer.allocate(32);
channel.receive(buffer);
buffer.flip();
debug(buffer);
} catch (IOException e) {
e.printStackTrace();
}
}
}
输出
waiting...
运行客户端
public class UdpClient {
public static void main(String[] args) {
try (DatagramChannel channel = DatagramChannel.open()) {
ByteBuffer buffer = StandardCharsets.UTF_8.encode("hello");
InetSocketAddress address = new InetSocketAddress("localhost", 9999);
channel.send(buffer, address);
} catch (Exception e) {
e.printStackTrace();
}
}
}
接下来服务器端输出
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f |hello |
+--------+-------------------------------------------------+----------------+
九、NIO vs BIO
1、stream vs channel
- stream 不会自动缓冲数据,channel 会利用系统提供的发送缓冲区、接收缓冲区(更为底层)
- stream 仅支持阻塞 API,channel 同时支持阻塞、非阻塞 API,网络 channel 可配合 selector 实现多路复用
- 二者均为全双工,即读写可以同时进行
2、IO 模型
同步阻塞、同步非阻塞、同步多路复用、异步阻塞(没有此情况)、异步非阻塞
- 同步:线程自己去获取结果(一个线程)
- 异步:线程自己不去获取结果,而是由其它线程送结果(至少两个线程)
当调用一次 channel.read 或 stream.read 后,会切换至操作系统内核态来完成真正数据读取,而读取又分为两个阶段,分别为:
- 等待数据阶段
- 复制数据阶段
根据UNIX 网络编程 - 卷 I,IO模型主要有以下几种
(1)阻塞IO - 同步
- 用户线程进行read操作时,需要等待操作系统执行实际的read操作,此期间用户线程是被阻塞的,无法执行其他操作
(2)非阻塞IO - 同步
用户线程
在一个循环中一直调用read方法
,若内核空间中还没有数据可读,立即返回
- 只是在等待阶段非阻塞
用户线程发现内核空间中有数据后,等待内核空间执行复制数据,待复制结束后返回结果
(3)多路复用 - 同步
Java中通过Selector实现多路复用
- 当没有事件是,调用select方法会被阻塞住
- 一旦有一个或多个事件发生后,就会处理对应的事件,从而实现多路复用
多路复用与阻塞IO的区别
- 阻塞IO模式下,若线程因accept事件被阻塞,发生read事件后,仍需等待accept事件执行完成后,才能去处理read事件
- 多路复用模式下,一个事件发生后,若另一个事件处于阻塞状态,不会影响该事件的执行
(4)异步IO
- 线程1调用方法后理解返回,不会被阻塞也不需要立即获取结果
- 当方法的运行结果出来以后,由线程2将结果返回给线程1
十、零拷贝
零拷贝指的是数据无需拷贝到 JVM 内存中,同时具有以下三个优点
- 更少的用户态与内核态的切换
- 不利用 cpu 计算,减少 cpu 缓存伪共享
- 零拷贝适合小文件传输
1、传统 IO 问题
传统的 IO 将一个文件通过 socket 写出
File f = new File("helloword/data.txt");
RandomAccessFile file = new RandomAccessFile(file, "r");
byte[] buf = new byte[(int)f.length()];
file.read(buf);
Socket socket = ...;
socket.getOutputStream().write(buf);
内部工作流如下
Java 本身并不具备 IO 读写能力,因此 read 方法调用后,要从 Java 程序的用户态切换至内核态,去调用操作系统(Kernel)的读能力,将数据读入内核缓冲区。这期间用户线程阻塞,操作系统使用 DMA(Direct Memory Access)来实现文件读,其间也不会使用 CPU
DMA 也可以理解为硬件单元,用来解放 cpu 完成文件 IO
从内核态切换回用户态,将数据从内核缓冲区读入用户缓冲区(即 byte[] buf),这期间 CPU 会参与拷贝,无法利用 DMA
调用 write 方法,这时将数据从用户缓冲区(byte[] buf)写入 socket 缓冲区,CPU 会参与拷贝
接下来要向网卡写数据,这项能力 Java 又不具备,因此又得从用户态切换至内核态,调用操作系统的写能力,使用 DMA 将 socket 缓冲区的数据写入网卡,不会使用 CPU
可以看到中间环节较多,java 的 IO 实际不是物理设备级别的读写,而是缓存的复制,底层的真正读写是操作系统来完成的
- 用户态与内核态的切换发生了 3 次,这个操作比较重量级
- 数据拷贝了共 4 次
2、NIO 优化
通过 DirectByteBuf
ByteBuffer.allocate(10)
- 底层对应 HeapByteBuffer,使用的还是 Java 内存
ByteBuffer.
allocateDirect
(10)
- 底层对应DirectByteBuffer,使用的是操作系统内存
大部分步骤与优化前相同,唯有一点:Java 可以使用 DirectByteBuffer 将堆外内存映射到 JVM 内存中来直接访问使用
- 这块内存不受 JVM 垃圾回收的影响,因此内存地址固定,有助于 IO 读写
- Java 中的 DirectByteBuf 对象仅维护了此内存的虚引用,内存回收分成两步
- DirectByteBuffer 对象被垃圾回收,将虚引用加入引用队列
- 当引用的对象ByteBuffer被垃圾回收以后,虚引用对象Cleaner就会被放入引用队列中,然后调用Cleaner的clean方法来释放直接内存
- DirectByteBuffer 的释放底层调用的是 Unsafe 的 freeMemory 方法
- 通过专门线程访问引用队列,根据虚引用释放堆外内存
- DirectByteBuffer 对象被垃圾回收,将虚引用加入引用队列
- 减少了一次数据拷贝,用户态与内核态的切换次数没有减少
3、进一步优化1
以下两种方式都是零拷贝,即无需将数据拷贝到用户缓冲区中(JVM内存中)
底层采用了 linux 2.1 后提供的 sendFile 方法,Java 中对应着两个 channel 调用 transferTo/transferFrom 方法拷贝数据
- Java 调用 transferTo 方法后,要从 Java 程序的用户态切换至内核态,使用 DMA将数据读入内核缓冲区,不会使用 CPU
- 数据从内核缓冲区传输到 socket 缓冲区,CPU 会参与拷贝
- 最后使用 DMA 将 socket 缓冲区的数据写入网卡,不会使用 CPU
这种方法下
- 只发生了1次用户态与内核态的切换
- 数据拷贝了 3 次
4、进一步优化2
linux 2.4 对上述方法再次进行了优化
- Java 调用 transferTo 方法后,要从 Java 程序的用户态切换至内核态,使用 DMA将数据读入内核缓冲区,不会使用 CPU
- 只会将一些 offset 和 length 信息拷入 socket 缓冲区,几乎无消耗
- 使用 DMA 将 内核缓冲区的数据写入网卡,不会使用 CPU
整个过程仅只发生了1次用户态与内核态的切换,数据拷贝了 2 次
十一、AIO
AIO 用来解决数据复制阶段的阻塞问题
- 同步意味着,在进行读写操作时,线程需要等待结果,还是相当于闲置
- 异步意味着,在进行读写操作时,线程不必等待结果,而是将来由操作系统来通过回调方式由另外的线程来获得结果
异步模型需要底层操作系统(Kernel)提供支持
- Windows 系统通过 IOCP 实现了真正的异步 IO
- Linux 系统异步 IO 在 2.6 版本引入,但其底层实现还是用多路复用模拟了异步 IO,性能没有优势
1、文件 AIO
@Slf4j
public class AioFileChannel {
public static void main(String[] args) throws IOException {
try (AsynchronousFileChannel channel = AsynchronousFileChannel.open(Paths.get("data.txt"), StandardOpenOption.READ)) {
// 参数1 ByteBuffer
// 参数2 读取的起始位置
// 参数3 附件
// 参数4 回调对象 CompletionHandler
ByteBuffer buffer = ByteBuffer.allocate(16);
log.debug("read begin...");
channel.read(buffer, 0, buffer, new CompletionHandler<Integer, ByteBuffer>() {
@Override // read 成功
public void completed(Integer result, ByteBuffer attachment) {
log.debug("read completed...{}", result);
attachment.flip();
debugAll(attachment);
}
@Override // read 失败
public void failed(Throwable exc, ByteBuffer attachment) {
exc.printStackTrace();
}
});
log.debug("read end...");
} catch (IOException e) {
e.printStackTrace();
}
System.in.read();
}
}
默认文件 AIO 使用的线程都是守护线程,所以最后要执行 System.in.read()
以避免守护线程意外结束
2、网络 AIO
public class AioServer {
public static void main(String[] args) throws IOException {
AsynchronousServerSocketChannel ssc = AsynchronousServerSocketChannel.open();
ssc.bind(new InetSocketAddress(8080));
ssc.accept(null, new AcceptHandler(ssc));
System.in.read();
}
private static void closeChannel(AsynchronousSocketChannel sc) {
try {
System.out.printf("[%s] %s close\n", Thread.currentThread().getName(), sc.getRemoteAddress());
sc.close();
} catch (IOException e) {
e.printStackTrace();
}
}
private static class ReadHandler implements CompletionHandler<Integer, ByteBuffer> {
private final AsynchronousSocketChannel sc;
public ReadHandler(AsynchronousSocketChannel sc) {
this.sc = sc;
}
@Override
public void completed(Integer result, ByteBuffer attachment) {
try {
if (result == -1) {
closeChannel(sc);
return;
}
System.out.printf("[%s] %s read\n", Thread.currentThread().getName(), sc.getRemoteAddress());
attachment.flip();
System.out.println(Charset.defaultCharset().decode(attachment));
attachment.clear();
// 处理完第一个 read 时,需要再次调用 read 方法来处理下一个 read 事件
sc.read(attachment, attachment, this);
} catch (IOException e) {
e.printStackTrace();
}
}
@Override
public void failed(Throwable exc, ByteBuffer attachment) {
closeChannel(sc);
exc.printStackTrace();
}
}
private static class WriteHandler implements CompletionHandler<Integer, ByteBuffer> {
private final AsynchronousSocketChannel sc;
private WriteHandler(AsynchronousSocketChannel sc) {
this.sc = sc;
}
@Override
public void completed(Integer result, ByteBuffer attachment) {
// 如果作为附件的 buffer 还有内容,需要再次 write 写出剩余内容
if (attachment.hasRemaining()) {
sc.write(attachment);
}
}
@Override
public void failed(Throwable exc, ByteBuffer attachment) {
exc.printStackTrace();
closeChannel(sc);
}
}
private static class AcceptHandler implements CompletionHandler<AsynchronousSocketChannel, Object> {
private final AsynchronousServerSocketChannel ssc;
public AcceptHandler(AsynchronousServerSocketChannel ssc) {
this.ssc = ssc;
}
@Override
public void completed(AsynchronousSocketChannel sc, Object attachment) {
try {
System.out.printf("[%s] %s connected\n", Thread.currentThread().getName(), sc.getRemoteAddress());
} catch (IOException e) {
e.printStackTrace();
}
ByteBuffer buffer = ByteBuffer.allocate(16);
// 读事件由 ReadHandler 处理
sc.read(buffer, buffer, new ReadHandler(sc));
// 写事件由 WriteHandler 处理
sc.write(Charset.defaultCharset().encode("server hello!"), ByteBuffer.allocate(16), new WriteHandler(sc));
// 处理完第一个 accpet 时,需要再次调用 accept 方法来处理下一个 accept 事件
ssc.accept(null, this);
}
@Override
public void failed(Throwable exc, Object attachment) {
exc.printStackTrace();
}
}
}
十二、3种IO使用场景
BIO
方式适用于连接数目比较小且固定的架构,这种方式对服务器资源要求比较高,并发局限于应用中,JDK1.4
以前的唯一选择,但程序简单易理解。NIO
方式适用于连接数目多且连接比较短(轻操作)的架构,比如聊天服务器,弹幕系统,服务器间通讯等。编程比较复杂,JDK1.4
开始支持。AIO
方式使用于连接数目多且连接比较长(重操作)的架构,比如相册服务器,充分调用OS
参与并发操作,编程比较复杂,JDK7
开始支持。